Salt Spray Test Chamber

Technical Specifications

The pictures are for reference only, the actual machine shall prevail

X 法 检测仪器 ZHONG ZHI 及志检测仪器

Address: 417, Shatian Section, Gangkou Road, Shatian Town,

Dongguan, Guangdong, China

Web.:https://www.tempcyclechamber.com/

1. Overview

- 1. The corrosion of protected and unprotected metal materials is affected by many environmental factors, which mainly depends on the type of metal material and the type of environment. It is impossible to design a laboratory accelerated corrosion test room that includes all environmental factors that affect corrosion resistance. Therefore, the laboratory test is designed to simulate the factors that play a major role in the corrosion of metal materials. This equipment is designed to simulate and increase the impact of the environment on metal materials exposed to outdoor atmospheres with salt pollution and accelerated corrosion. The equipment includes test methods for cyclically exposing specimens to salt spray, dry, and hot and humid environments. This equipment test is a comparative test, and the test results cannot predict the long-term results of the corrosion resistance of the same metal material used under these environmental conditions. However, this method can still provide valuable information on the relevant performance of materials exposed to salt pollution environments similar to the test conditions. Compared with traditional accelerated corrosion tests such as neutral salt spray test (NSS), acetic acid salt spray test (AASS), and copper accelerated acetic acid salt spray test (CASS), the biggest advantage of this equipment test is that it can better reproduce the corrosion occurring in outdoor salt pollution environments.
- 2. The accelerated corrosion test of this equipment is applicable to: metals and their alloys, metal coatings (anodic and cathodic), conversion coatings, anodized coatings, organic coatings on metal materials, etc.

2. Equipment installation site and operating environment conditions

1. Site Requirements	Equipment installation	
	site size requirements	
	A: not less than 800mm	D
	B: Not less than 1000mm	
	C: Not less than 1200mm	
	D: Not less than 1500mm	
	Flat ground, good	B
	ventilation	A C
	No strong vibration	,

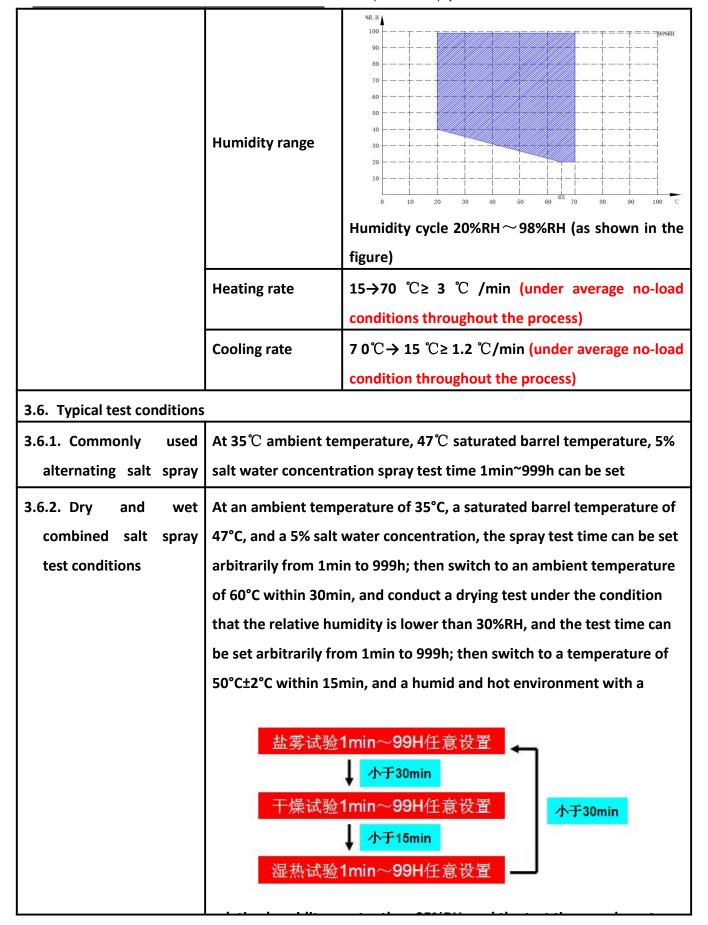
		around the equipment	
		There is no strong electromagnetic field around the device	
		There are no flammable, explosive, corrosive substances and dust around	
		the equipment.	
		Leave appropriate space for use and maintenance around the equipment	
2.	Environmental	Temperature: 5 ~ 30 °C, relative humidity ≤ 85 % RH	
	conditions	Air pressure: 86kPa~106kPa	
		Note: The equipment installation site needs to be air-conditioned to	
		ensure the ambient temperature	
3.	Equipment power	AC 380V±10% V three-phase four-wire + protective grounding, 50Hz; set up	
	supply and capacity	the electric cabinet within 2 to 3 meters from the equipment , the	
		maximum operating power of the equipment: 20.6 KW, the maximum	
		current: 31 A	
4.	Equipment	The water supply pressure is 0.2 \sim 0.4Mpa, the water supply pipe diameter	
	humidification and	is 20mm, and the water quality must meet the third-level water use	
	saturated barrel water	standard specified in GB/T 6682-2008 analytical laboratory water	
	supply	specifications and test methods. The equipment has a reserved water	
		supply interface with 1/2" internal thread, and the water consumption is	
		about 80L /24h	
5.	Prepare brine water	The water quality must meet the second-level or higher water quality	
		standards specified in GB/T 6682-2008 Water Specifications and Test	
		Methods for Analytical Laboratories. The water consumption is about 40 to	
		60 L/24h under continuous spraying conditions.	
6.	Compressed air	Air supply pressure 0.4 ~ 0.8Mpa , air volume 2m3 / h in continuous spray	
		state	
7.	Equipment exhaust	The fully automatic pressure-balanced demisting device only needs to be	
		connected to the demisting pipe to automatically demist according to the	
		pressure in the box. The test room is equipped with one demisting hole	
		with a diameter of 50mm . The demisting pipe is extended to the outdoors	
		during installation. A 50mm hole is reserved on site . The demisting	
		position is specified by the customer. The extension pipe is not more than 3	

	meters to ensure that the gas will not be affected by the reverse pressure of the atmosphere. Strong exhaust should be avoided at the end of the exhaust hole to avoid strong airflow in the test box.
8. Equipment drainage	The equipment drainage pipe must be extended to the outside and ensure that the drainage pipe is unobstructed. The drainage outlet must be lower than the equipment drainage outlet, and the drainage pipe diameter is 1/2

3. Equipment composition and performance parameters

Volume, weight, dimensions and specifications		
1.1. Product Name Composite salt dry and wet testing machine		
1.2. Product Model	CZ-1600D	
1.3. Nominal content	1280L Note: The volume of the top sloping roof is not included	
1.4. Inner box effective size (mm)	1600×800×1000 W×H×D Note : Top inclined height 535 mm	
1.5. Appearance space (mm)	Approximately 2900×1650×1220 W×H×D, excluding salt water tank dimensions	
1.6. Brine tank size (mm)	Ф 700 × H930, capacity 300L	
1.7. weight About 700 kg		
2. Device power, current and power supply		
2.1. Total power of machine	Total installed power 28.6KW, maximum operating power 20.6KW	
2.2. Maximum current	31 A	

	AC 380V three-phase four-wire + protective grounding; voltage
	fluctuation range allowed is ±10%V;
	The frequency fluctuation range is 50±0.5Hz; TN-S power supply or TT
	power supply
2.3. Power supply	The grounding resistance of the protective ground wire is less than 4Ω
	The user is required to configure an air or power switch of
·	corresponding capacity for the equipment at the installation site, and
supply	this switch must independently control the use of this equipment.
	When placing powered samples in the chamber, the sample power
	supply must use an external power supply, and the power supply of
	this machine must not be used directly;
3. Main technical paramete	ers of the equipment
3.1. Device Function	Salt spray test mode and damp heat mode (including dry and damp
	heat) can be switched arbitrarily, and program combination test or
	single function test can be performed
3.2. Control accuracy	Temperature resolution: 0.01 $^{\circ}\mathrm{C}$
	Humidity resolution: 0.1%RH
	Temperature deviation: ≤± 2.0 °C
	Humidity deviation: ≤±3%RH when ≥75%RH; Humidity deviation:
	≤±5%RH when <75%RH;
	Temperature uniformity: ≤2 °C
	Humidity uniformity: ≤3%RH when ≥75%RH; Humidity deviation:
	≤5%RH when <75%RH
	Temperature fluctuation: ±0.5℃
	Humidity fluctuation: ±2%RH
	Note: Temperature uniformity and deviation are values measured at
	an ambient temperature of +25°C, relative humidity ≤85%RH, and
	without a sample.
3.3. noise	Less than 75 db (measured 1m from the front of the cabinet and 1.2m
	from the ground)


3.4. Salt spray	test	Temperature	Ambient temperature ~ 55 ℃ adjustable
functions	and	range	
parameters		Salt spray	1 ~ 2 ml/($h\cdot80cm^2$) adjustable (collect for more
		deposition	than 16 hours and take the average value)
		Salt spray deposition uniformity	±0.5ml/ (h·80cm ²) (collected for more than 16 hours);
		Spray method	Can set continuous / interval program and has quantitative control function;
		Spray system	The filter installed in the salt water tank can be cleaned and reused repeatedly; each nozzle can be fine-tuned in angle, and can be disassembled and cleaned;
		Salt water concentration	5 % ± 1% or specified value
		pH value of salt water	Neutral 6.5 ~ 7.2, acidic 3.0 ~ 3.2
		Saturator temperature range	Ambient temperature ~ 70℃ adjustable;
		Spray pressure	70 ∼170 Kpa
3.5. Wet heat/dry	mode	Temperature	15 \sim 70 $^\circ \! \mathbb{C}$ adjustable
		range	13 70 C aujustable

Address: 417, Shatian Section, Gangkou Road, Shatian Town,

Dongguan, Guangdong, China

Web.:https://www.tempcyclechamber.com/

3.6.3. Salt spray and dry	At 35℃ ambient temperature, 47℃ saturated barrel temperature, 5%
alternating test	salt water concentration, spray test time 1min~999h can be set
	arbitrarily, then switch to 15 $^{\sim}$ 30 $^{\circ}{\rm C}$ temperature, relative humidity
3.7. Meet the test	DO160 E/F/G salt spray test requirements
method	GB/T 20854-2007/ISO14993-2001 Corrosion of metals and alloys -
	Accelerated test for cyclic exposure to salt spray, "dry" and "wet"
	conditions;
	GB/T24195-2009/ISO 16151:2005 Cyclic accelerated corrosion test
	under acid salt spray, dry and wet conditions;
	GJB 150.11A-2009 Military Equipment Laboratory Environmental Test
	Method Salt Spray Test;
	GB/T2423.18-2021/IEC60068-2-52:2017 Basic Regulations for Testing
	of Electrical and Electronic Products Kb: Salt Spray Alternating (Sodium
	Chloride Solution)
	GB/T2423.17-2008/IEC 60068-2-11-1981 Environmental testing for
	electrical and electronic products Part 2: Test method Test Ka Salt spray
	GB/T10125-2021/ISO9227:2017 Artificial atmosphere corrosion test
	Salt spray test
	GB/T 2423.3-2016/IEC60068-2-78:2012 Environmental testing Part 2:
	Test methods Test Cab: Steady state damp heat test
	GB/T 2423.4-2008/IEC60068-2-30:2005 Environmental testing for
	electric and electronic products Part 2: Test method Test Db: Cyclic
	damp heat (12h + 12h cycle)
	GB/T 31467.3-2015 Lithium-ion power battery packs and systems for
	electric vehicles Part 3: Safety requirements and test methods: Salt
	spray test;

3.8. Equipment meets	GB / T5170.5-2008 Test methods for wet heat test equipment
the test method	GB/T 10587-2006 Technical requirements for salt spray test chambers
	GB/T 10586-2006 Technical requirements for humidity and heat test
	chambers
	GB/T 5170.8-2008 Test methods for environmental testing equipment
	for electrical and electronic products Salt spray test equipment
3.9. Sample limit	This test equipment is prohibited from:
3.3. Sample mint	
	Testing or storage of samples of flammable, explosive or volatile
	substances
	Testing or storage of samples of corrosive substances
	Testing or storage of biological samples
	Testing or storage of samples with strong electromagnetic radiation
	sources
	Testing and storage of radioactive material samples
	Testing and storage of samples of highly toxic substances
	Testing and storage of samples that may produce highly toxic
	substances during testing or storage
4. Air conditioning system	
4.1. Circulation fan	The motor shaft is made of 316L stainless steel and the bearing of the
	front cover of the motor is made of imported waterproof and high
	temperature resistant bearing. Silicone sealing pads are added to the
	motor installation holes to prevent corrosive gases from invading the
	motor. At the same time, the motor is installed outside the working
	space of the equipment, the shaft extends into the room, and the
	stirring impeller is installed at the tail end of the shaft; special
	insulation measures and heat dissipation system improve the safety of
	the motor.
4.2. Circulation fan	The circulating impeller is made of S US316L stainless steel by
	stamping and is installed inside the centrifugal volute.

4.3. Air supply method	The circulating fan forces air circulation. The equipment is equipped with a temperature adjustment chamber behind the inner box. The circulating air duct, evaporator, humidification steam outlet, and fin heating tube are installed in the adjustment chamber. The shutter outlet is installed on the top of the adjustment chamber, and the return air outlet is installed at the bottom. The circulating air is blown out from the top shutter, passes through the test space, and then is recycled from the bottom.	
5. Heating system		
5.1. Salt spray cycle heating	Independently developed patented dry heat salt spray heating system; titanium tube armored heating devices are installed on both sides of the bottom of the inner box, using heat radiation to heat, and PID to control the heating amount; thus achieving long-term stable temperature operation	
5.2. Wet Heat Cycle Heating	Titanium tube armored fin heater is used, circulating fan is used to send strong air circulation, and PID controls the heating amount to achieve temperature balance	
5.3. Saturated barrel heating system	Titanium tube armored heating tube, water heating method, compressed air enters hot water and overflows in the form of bubbles, PID controls the heating amount to achieve constant temperature and pure spray gas	
6. Humidification and dehumidification system		
6.1. Humidification method	Adopt external boiler humidification method, the humidification tube adopts pure titanium tube armored heating tube, PID output controls SSR action to control heating output	
6.2. Humidity measurement method	Wet-Dry Bulb Comparison Method, PT100 Grade A precision platinum resistor	

6.3. Humidification tank	P VC water tank, install high and low magnetic reed switches in the	
	water tank to monitor the water level, install solenoid valves in the	
	water supply pipes, automatically replenish water according to the	
	water level in the water tank, and install mechanical float valves in the	
	water tank to prevent the liquid level magnetic reed switch from losing	
	control to provide safety protection for water supply. An overflow pipe	
	for over-water level is installed on the top of the water tank for	
	multiple protections	
6.4. Humidification water	Water is replenished through water level difference, and a water level	
supply	control device is installed next to the humidifier to automatically	
	control the humidification water level	
6.5. Dehumidification	Compressor dehumidification	
method		
7. Spray and spray system		
7.1. Spray Principle	The Benoit principle is used to absorb salt water and then atomize it.	
	The atomization degree is uniform and there is no blocking	
	crystallization phenomenon, which can ensure the standard of	
	continuous testing.	
	Air compressor → primary oil-water separator → air storage tank →	
	pressure reducing valve → main solenoid valve → secondary oil-water	
	separator → saturator → pressure regulating valve → spray solenoid	
	valve → nozzle;	
7.2. nozzle	Independently developed patented anti-clogging spray nozzle, made of	
	pure titanium corrosion-resistant material, can control the size and	
	angle of the spray	

Address: 417, Shatian Section, Gangkou Road, Shatian Town,

Dongguan, Guangdong, China Web.:https://www.tempcvclechamber.com/

7.3. Saturation Bucket

It is welded with SUS304# stainless steel. In order to ensure that the compressed air for spraying is pure and constant temperature compressed air, a special air filtering and heating pressure barrel is designed. A water level control device, a heating device and a temperature control system are set in the pressure barrel. At the same time, a circle of compressed air overflow holes are evenly installed at the bottom of the pressure barrel. The compressed air source oil-water separator and the air source pressure regulating valve are connected externally. After the compressed air is adjusted to the required pressure value, it enters the heating pressure barrel, passes through the holes at the bottom and enters the water in the pressure barrel, and then overflows in the form of bubbles, and then supplies the spray nozzle from the top of the heating pressure barrel; at the same time, water level sensing probes are set near the bottom and the top of the pressure barrel to realize automatic water supply; the water level in the heating pressure barrel is constant at the specified water level, so as to obtain pure saturated steam and ensure that the temperature of the saturated compressed air is kept within the set range for a long time, and it has liquid level monitoring and liquid level limit alarm functions.

7.4. Salt water supply system

The prepared salt solution is stored in the salt water tank, and the peristaltic pump is driven by a stepper motor to suck the salt water in the salt water tank and supply it to the nozzle. Each nozzle has an independent channel to control the salt water supply, thus avoiding the problem of nozzle crystallization in the traditional siphon spray method. At the same time, the water supply flow of the peristaltic pump is adjustable and controllable, effectively ensuring the spray volume.

7.5. Salt water tank

The salt water tank is divided into a salt water preparation tank and a salt water supply tank, which are made of PE material and have a capacity of about 300L;

7.6. Spray control	Can run manual spray or set automatic spray according to program;	
7.7. Spray volume	a) Independently developed and manufactured patented fine	
adjustment method	atomization spray adjustment system;	
	b) A mist volume adjustment baffle is installed above the spray	
	nozzle to adjust the opening of the baffle to control the amount of	
	mist output;	
	c) The high-precision stepper motor drives the brine water supply	
	peristaltic pump to adjust the brine water supply according to the	
	amount of mist, achieving constant spray volume control and	
	water conservation;	
	The two-stage pressure regulation controls the spray pressure to	
	achieve fine atomization and spray salt mist into the test space,	
	achieving uniform spray deposition	
7.8. Spray volume	Two Ф100mm collecting funnels are installed on the left and right	
monitoring	sides of the box at a distance of 170mm from the box wall and 1/3 of	
	the height of the inner box bottom . The end of the funnel is extended	
	to the outdoors with a hose. A collecting measuring cylinder	
	installation port is set on the outdoor box wall, and a 50ml measuring	
	cylinder is installed inside to monitor the spray volume.	
7.9. Pressure regulation	The spray pressure is 0.07-0.17Mpa, which can be adjusted in two	
	stages . The first stage is equipped with an air filter pressure regulating	
	valve to adjust the compressed air to 0.2-0.3MPa. The second stage is	
	adjusted to 0.07-0.17Mpa spray pressure so that the spray pressure	
	sprayed from the nozzle is within the specified range.	
7.10. Defogging control	Manual defogger can be operated or programmed to automatically	
	defog; compressed air is filled into the room and then the indoor fog is	
	discharged for quick defogger	
8. Equipment structure		

Address: 417, Shatian Section, Gangkou Road, Shatian Town,

Dongguan, Guangdong, China

Web.:https://www.tempcvclechamber.com/

8.1. Box structure layout

The test chamber box is welded from pure titanium plates with a thickness of 1 mm;

The test chamber is made of stainless steel plate with thick surface paint treatment, the plate thickness is 1.2 mm; (paint color R AL7035) The control box and the test box are an integral left-right structure, with the test box on the left and the dry and wet heat control box on the right. The water-electricity separation structure effectively prevents water from entering the electrical control box and damaging the accessories. It has a beautiful appearance and is safe and reliable to use.

The whole equipment is a table-top structure. The bottom of the equipment is welded with stainless steel square tubes into a frame structure. Fomar casters are installed at the bottom to facilitate the relocation and positioning of the equipment.

The box body is sealed with high temperature resistant and corrosion resistant silicone strips to ensure that the corrosive gas in the box does not leak;

The thermal insulation material is made of polyurethane rigid foam; Salt water replenishment tank: external, easy to clean.

The air supply port is installed at the back of the equipment, and a control solenoid valve is set on the air supply pipeline

Address: 417, Shatian Section, Gangkou Road, Shatian Town,

Dongguan, Guangdong, China

Web.:https://www.tempcvclechamber.com/

8.2. Box cover

The inner layer of the test chamber sealing cover is welded with pure titanium plates, and the outer layer is made of stainless steel plate with paint treatment. The paint color is grass green, color number RAL6018 or user-specified color number. (If no specification is made when placing an order, RAL 6018 is assumed by default). The top is made into a 1100 angle sealing cover to effectively prevent condensed water from dripping onto the sample surface during the test and affecting the test results.

The box cover is equipped with a transparent tempered glass observation window, the window size is: width 400mm * height 280mm

8.3. Lid lifting operation

The air cylinder is used to control the lifting of the box cover. The lifting speed can be adjusted by air pressure, which is easy to operate.

8.4. Upper standard sample fixture

The inner box is placed on the top and can be disassembled. The standard test piece is placed on the fixture. The sample installation angle is 20°±5° and tilted from the vertical plane. The sample holder is made of corrosion-resistant and insulating resin material, which has a series of excellent characteristics such as high temperature resistance, corrosion resistance, high strength, low specific gravity, low moisture absorption, small elongation and good insulation, as shown in the figure:

8.5. Lower load-bearing	Placement of large samples on
sample rack	the lower layer: A mesh sample
	placement platform is set at the
	bottom of the test chamber.
	The platform is placed above
	the heating layer at the bottom
	of the chamber, about 150mm
	above the bottom plate of the
	inner chamber. The surface of
	the platform is evenly
	perforated to prevent the accumulation of solution after fogging, and
	is also conducive to air circulation in the chamber. The mesh plate is
	detachable. The mesh material is made of reinforced fiberglass, with a
	load-bearing capacity of ≥ 600kg/m2 ^{and} evenly distributed.
8.6. Drainage pipe	Use acid and alkali resistant pipes as drainage pipes;
8.7. Power distribution	Distribution board, distribution board, cooling fan, over-temperature
control cabinet	protector, main power leakage circuit breaker (with protective cover),
	distribution control cabinet and valve room are isolated
8.8. Valve chamber	Water adding solenoid valve, spray solenoid valve, defogger solenoid
	valve, air saturation pressure barrel, spray regulating valve, brine
	water supply pump device
8.9. Control interface	Over-temperature protection setter, power start switch, program
	controller, working time counter, RS -232 communication interface,
	USB interface, R J45 network interface
8.10. Power cord	Located on the back of the control box
8.11. Drainage holes	The test chamber drain hole is located at the lower left of the back of
	the test chamber, with a drainage hole diameter of 1/2 "; the
	saturated barrel drain hole is located at the back of the box, with a
	drainage hole diameter of 1/4"
8.12. Exhaust Hole	A Φ48mm mist exhaust hole is set at the back of the test chamber ,
	which extends to the outdoors during installation

8.13. Test hole	A Φ50mm test hole is installed at the center of the back of the			
	equipment, with a sealing cover and a sealing plug attached.			
8.14. Automatic water	Located at the lower left of the back of the test room			
supply hole				
9. Electrical control system				
9.1. Controller	7-inch true color, 800×480 dot matrix LCD display Composite salt spray dedicated programmable controller , supports constant temperature salt spray, salt spray, high temperature drying, constant humidity and heat, alternating humidity and heat, salt spray humidity and heat cycle and other functions			
9.2. How it works	Program mode, set value mode, timed start and stop			
9.3. language	Language Chinese/English/Russian can be switched freely			
9.4. Setting method	Human-computer dialogue touch screen input			
9.5. Data recording method	Battery-protected RAM, 8-10 years, can save the device's set value, sampling value and sampling time; curve recording cycle can be set to 30-180 seconds, the maximum memory time can continuously store 90 days of historical curves and historical data (when the sampling time is 1 minute), without continuous use, the data can be saved for more than 10 years			
9.6. Display resolution	Temperature: 0.01 $^{\circ}\!$			

9.7. Program Features	Spray cycle: The maximum test time for continuous spray is 9999		
	hours, and the maximum spray time for intermittent spray is		
	The maximum spraying stop time is 99 hours and 59 minutes.		
	Available program quantity: Maximum 120 groups		
	One program can be composed of 1 to 99 segments.		
	Available memory capacity: 1 2 00 segments		
	Repeatable commands: Each command can be executed up to 999		
	times		
	Programs can be linked together		
	TS1~TS3 three sets of time signals		
	The program time can be set from 1 minute to 999 hours per section		
9.8. Setting range	Temperature: Adjust according to the temperature operating range of		
	the device (upper limit +5 $^{\circ}$, lower limit -5 $^{\circ}$)		
9.9. Temperature and	PT100 platinum resistance		
humidity input			
9.10. Communication	Can be connected to a computer to display curves and collect data;		
function	Can be used as a monitoring and remote control system;		
	Can do synchronous control of multiple machines;		
	RS-485/RS-232		
	RJ45 Ethernet port		
	USB interface.		
9.11. USB storage	Plug in 1G- 16G USB disk to download historical curves, historical data,		
	control system parameters, hot-swappable function		
9.12. Power off memory	The power failure recovery mode can be set as: hot start/cold		
function	start/stop.		
9.13. Scheduled startup	The start time can be set at will. After turning on the power, the		
function	machine will automatically run when the time is up.		
9.14. Software usage	Simplified Chinese Windows XP or Simplified Chinese Windows 7/		
environment	Windows 10 operating system.		

9.15. Network	It can be connected to Ethernet through professional software, and			
connection	remote control and remote assistance can be performed through the			
	network. Test data can also be collected through the network, and			
	multiple machines can be controlled at the same time.			
9.16. Smart Features	Intelligent interconnection, intelligent fuzzy function and ARW			
	start-up-overtravel inhibition, intelligent power saving, intelligent			
	function to extend equipment life, intelligent output modes (built-in			
	timer) up to 28 types, intelligent humanized control, etc.			
9.17. Open software	Support third-party host sending code to control the device start, stop,			
functions	and record data functions			
	Note: The controller provides function codes, and users can edit the			
	host computer software program to achieve unified monitoring and			
	control			
9.18. Output control	Anti-integral windup PID			
method	BTC balanced temperature control method (temperature test			
	equipment)			
	Spray time and cycle can be set according to user's standard needs			
9.19. Additional	Fault alarm, cause and processing prompt function			
functions	Power failure protection function			
	Upper limit temperature protection function			
	Calendar timing function (automatic start and automatic stop)			
	Self-diagnosis function.			
9.20. Status display	A cylindrical three-color sound and light alarm			
	(with LED lamp beads) is installed on the top			
	of the equipment; the yellow light is on when			
	waiting to start or the operation is completed;			
	the green light is on during normal operation;			
	the red light is on for emergency stop or			
	equipment failure alarm, and the buzzer			
	sounds intermittently;			

9.21. Circulation fan	It uses a high temperature resistant, long shaft motor, which is			
	installed in the outdoor space, with the shaft extending into the room,			
	and a stirring impeller installed at the tail end of the shaft; special			
	insulation measures and heat dissipation system improve the safety of			
	the motor.			
9.22. Heating control	The temperature controller sends instructions according to the set			
method	temperature and the signal transmitted by the temperature sensor in			
	the test chamber, and controls the output of the heater through the			
	logic circuit to adjust and control the SSR control module. It has			
	reliable operation, no contact, no spark, long life, no noise, no			
	electromagnetic interference, fast switching speed, strong			
	anti-interference ability, small size, vibration resistance, impact			
	resistance, explosion-proof, moisture-proof, and corrosion-resistant,			
	and can directly drive high-current loads with tiny control signals.			
10. Refrigeration and dehu	midification system			
10.1. Refrigeration	In order to ensure the cooling rate and minimum temperature			
method	requirements of the test room, this test room adopts a compressor			
	refrigeration system, which consists of a compressor, a radiator, an			
	evaporator and a throttling device. Heat exchange is achieved through			
	an evaporative condenser.			
10.2. Refrigeration	Adopt low temperature compressor imported from Europe			
compressor				
10.3. Cooling method	Air- cooled scale condenser, fan heat dissipation			
10.4. Evaporator	The evaporator is made of pure titanium tubes and titanium radiators,			
	which has good corrosion resistance.			
10.5. Throttling device	Capillary			
10.6. Oil separator	Separate the refrigeration oil droplets mixed with the			
	high-temperature and high-pressure refrigerant gas discharged from			
	the compressor and return them to the compressor curved track cavity			
	for compressor lubrication and cooling			

10.7. Filter drier		It absorbs the residual moisture and acidic substances in the		
		refrigerant of the refrigeration system, and filters out the solid		
		impurities, copper chips, etc. in the system, protecting the normal		
		operation of the expansion valve and capillary tube, and preventing		
		the occurrence of Raw ice blockage and dirty blockage		
10.8. Nitrogen	Filled	It is recommended to use high-quality oxygen-free copper tubes for		
Welding Process		low-temperature connecting pipelines. The pipeline production,		
		nitrogen filling welding, and 48-hour high pressure leakage prevention		
		process are used to ensure the welding quality.		
10.9. refrigerant		Environmentally friendly refrigerant R404a is used as the refrigeration		
		medium of this refrigeration system		
control	saving	数平衡技术加熱/ 制冷输出量示意图 The refrigeration system uses the cold balance technology to save about 30% of electricity and effectively reduce the cost of use. As shown in the figure above, thermal balance is achieved by changing		
		the size of the heating output to achieve constant temperature. In this way, when the cooling capacity of the compressor is constant, the		
		heating will become higher and higher, thereby increasing energy		
		waste and causing unnecessary expenses to the user. The cold balance		
		technology achieves constant temperature by changing the		
		compression cooling capacity. When the temperature approaches our		
		set value, the cooling capacity is gradually reduced through PID		
		adjustment to achieve constant temperature (theoretically, 0 heating		
		output can be achieved, but there will be a small amount of heating		
		output in actual production), achieving the purpose of energy saving.		

Address: 417, Shatian Section, Gangkou Road, Shatian Town,

Dongguan, Guangdong, China Web.:https://www.tempcvclechamber.com/

10.11. Refrigeration system features

- A. All system pipelines are subjected to ventilation and pressurization 22kg leak detection test.
- B. The heating and cooling systems are completely independent.
- C. Equipped with our company's professional technical features, it can prevent high temperature and high pressure airflow from damaging the system when the refrigerator is turned on at the same time.
- D. All refrigeration system operation procedures are completely controlled by a microcomputer controller.
- Ex There is a water tray at the bottom of the compressor to collect the condensed water produced by frost.
- F. The compressor is equipped with a PTC temperature sensor, which provides over-temperature protection when the compressor is over-temperature.
- G. The high and low pressure protection device monitors the refrigerant pressure during the operation of the equipment. Once the refrigerant pressure is higher than the system's limit pressure or lower than the system's set minimum pressure, an alarm will be immediately issued and the power will be cut off until the fault is eliminated.
- H. The refrigeration system uses all imported brand accessories with reliable quality to ensure the stability of the system.

11. Safety protection system

11.1. Refrigeration	Compressor overheat, overload, overpressure, overtemperature	
system	protection	
11.2. Test Chamber	Extreme over-temperature, automatic pressure balance protection	
11.3. Humidification	Humidifier heat pipe dry burning, water shortage abnormality,	
system	heating pipe short circuit protection	
11.4. Heating system	Heating tube extreme over-temperature , heating tube short-circuit	
	protection	

Address: 417, Shatian Section, Gangkou Road, Shatian Town,

Dongguan, Guangdong, China

Web.:https://www.tempcyclechamber.com/

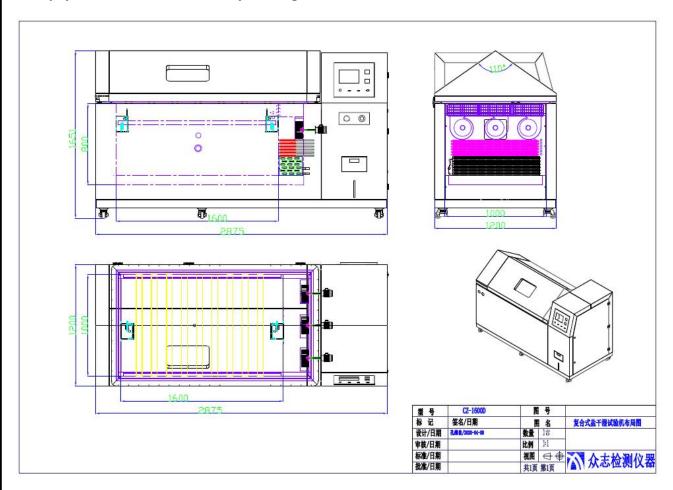
11.5. power supply	Main power supply phase loss, reverse phase, high voltage, low
	voltage, overload and short circuit protection, control circuit short
	circuit and overload protection
11.6. Circulation fan	Fan overload , fan short circuit , fan reverse protection

- 12. Factory-provided equipment and information
- 12.1. 1 copy of the equipment factory packing list
- 12.2. 1 copy of equipment electrical schematic diagram
- 12.3. 1 piece device instruction manual
- 12.4. 1 piece equipment certificate
- 12.5. 1 piece equipment warranty card
- 12.6. 1 copy of equipment factory inspection report
- 12.7. 1 piece controller monitoring CD
- 12.8. 2 pieces mist collecting cylinders
- 12.9. 2 pieces mist collector
- 12.10. 1 set air atomizing nozzle
- 12.11. 2 bottles sodium chloride (500g/bottle)
- 12.12. 1 pack PH test paper
- 12.13. 1 set connecting pipe
- 12.14. 1 piece plastic bucket (13L)
- 12.15. 1 piece measuring cup
- 12.16. 1 meter imported peristaltic pump tube
- 12.17. 1 set of test sample rack

13. Main spare parts list

No.	Product Name	Brand	QTY	Remark
13.1.	Program Controller	Zhongzhi	1 set	
13.2.	Laboratory over-temperature protector	TEMI, Korea	1 unit	
13.3.	Spray adjustment device	Zhongzhi	1 set	
13.4.	Peristaltic Pumps	Hengjie,China	1 unit	

13.5.	Laboratory box	Zhongzhi	1 unit
13.6.	Evaporator	Kejian/Luoke, China	1 unit
13.7.	Condenser	Xingyue/Yongqiang,China	1 unit
13.8.	Refrigerant	R404a	5kg
13.9.	Refrigerant solenoid valve	Saginomiya,Japan/ Castel, Italy	2
13.10.	Pressure protection switch	Saginomiya,Japan	2
13.11.	Filter drier	Emerson, USA	1
13.12.	compressor	TECUMSEH, France	1 unit
13.13.	Power circuit breaker	Schneider, France	1
13.14.	Heater over temperature protector	Rainbow,Korea	4
13.15.	Blending room motor	Yutian, China	3 units
13.16.	Blending chamber wind wheel	Feng Yu,China	3
13.17.	Test chamber heater	Zhongzhi	1 batch
13.18.	Flake heating tube	Weide,China	1 group
13.19.	Humidification heating tube	Weide,China	1 group
13.20.	Solid State Relays	Carlo Gavazzi,Swiss	4 sets
13.21.	AC contactor	Schneider, France	6
13.22.	Thermal overload relay	Schneider, France	2
13.23.	Intermediate relay	OMRON,Japan	6
13.24.	Self-locking switch with light	Siemens, Germany	1
13.25.	Temperature measuring body	Omega,USA	4



GUANGDONG ZHONGZHI TESTING INSTRUMENTS CO., LTD.Address: 417, Shatian Section, Gangkou Road, Shatian Town,

Dongguan, Guangdong, China Web.:https://www.tempcyclechamber.com/

13.26.	Liquid Level Reed Switch	China Brand	4	
13.27.	Phase sequence failure protector	Swiss Carlo Gavazzi	1	
13.28.	Water supply / spray solenoid valve	Delixi,China	3	
13.29.	Pressure regulating valve	AirTac,Taiwan China	1	
13.30.	cylinder	AirTac, Taiwan China	2	
13.31.	Other supporting materials	China Brand	1 batch	

14. Equipment overall structure layout diagram

